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Abstract. This paper investigates the properties of smoothers in the context of algebraic multi-
grid (AMG) running on parallel computers with potentially millions of processors. The development
of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such
as the Gauss-Seidel (GS) algorithm, are inherently sequential. Based on the sharp two-grid multigrid
theory from [17, 18] we characterize the smoothing properties of a number of practical candidates for
parallel smoothers, including several C-F , polynomial, and hybrid schemes. We show, in particular,
that the popular hybrid GS algorithm has multigrid smoothing properties which are independent of
the number of processors in many practical applications, provided that the problem size per processor
is large enough. This is encouraging news for the scalability of AMG on ultra-parallel computers. We
also introduce the more robust `1 smoothers, which are always convergent and have already proven
essential for the parallel solution of some electromagnetic problems [23].

1. Introduction. Multigrid (MG) linear solvers are optimal methods because
they require O(N) operations to solve a sparse system with N unknowns. Conse-
quently, multigrid methods have good scaling potential on parallel computers, since
we can bound the work per processor as the problem size and number of processors
are proportionally increased (weak scaling). Near ideal weak scaling performance has
been demonstrated in practice. For example, the algebraic multigrid (AMG) solver
BoomerAMG [20] in the hypre software library [21] has been shown to run effectively
on more than 125 thousand processors [16, 5].

One critical component of MG is the smoother, a simple iterative method such
as Gauss-Seidel (GS). In the classical setting, the job of the smoother is to make the
underlying error smooth so that it can be approximated accurately and efficiently on a
coarser grid. More generally, the smoother must eliminate error associated with large
eigenvalues of the system, while the coarse-grid correction eliminates the remaining
error associated with small eigenvalues.

Some of the best smoothers do not parallelize well, e.g., lexicographical GS. Others
used today, while effective on hundreds of thousands of processors, still show some
dependence on parallelism and may break down on the millions of processors expected
in the next generation machines (we use the term processor here in a generic sense,
and distinguish it from cores only when necessary). One such smoother is the hybrid
GS smoother used in BoomerAMG, which uses GS independently on each processor
and updates in a Jacobi-like manner on processor boundaries. In practice hybrid GS
is effective on many problems. However, because of its similarity to a block Jacobi
method, there is no assurance of obtaining the good convergence of lexicographical
GS. In fact, Hybrid GS may perform poorly or even diverge on certain problems,
and its scalability has often been cited as a concern as the number of blocks increase
with increasing numbers of processors or as block sizes decrease (see, e.g. [1, 15, 31]).
For these reasons, previous papers have studied alternatives such as using polynomial
smoothers [1] or calculating weighting parameters for hybrid GS [32]. Yet despite its
shortcomings, hybrid GS remains the default option in hypre because of its overall
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efficiency and robustness. Therefore, one of the main purposes of this paper is to
better understand the potential of block smoothers like hybrid GS on millions of
processors. We show that these hybrid smoothers can in fact exhibit good smoothing
properties independent of parallelism, as long as the blocks satisfy certain properties
(e.g., the blocks have some minimal size).

There are many other well-known smoothers that exhibit parallel-independent
smoothing properties. In particular, methods like weighted Jacobi (both pointwise
and blockwise), red/black GS, Chebyshev and Krylov-based polynomial methods have
been extensively studied in classical works such as [12, 29, 19, 6]. In practice, each
of these methods have their drawbacks. For example, weighted Jacobi requires the
estimation of an ideal weight [32] and Chebyshev involves estimating an eigenvalue
interval [1]. For multi-colored GS [1], the number of parallel communications required
per iteration is proportional to the number of colors, hence it tends to be slow, es-
pecially on coarser grids in AMG where the number of colors is difficult to control.
Therefore, the secondary purpose of this paper is to study and identify smoothers that
are practical for AMG in the context of millions of processors. To this end, we analyze
a variety of candidates for smoothing, revisiting some of the classics as well, under a
common framework based on the recent two-grid theory in [17, 18]. Numerical results
complementing the theory can be found in [4].

The structure of the paper is as follows. In Section 2, we introduce our approach
for doing smoothing analysis in general, and we then analyze several specific classes
of smoothers in Section 3 through Section 6, including C-F , polynomial, hybrid, and
`1 smoothers. We make concluding remarks in Section 7.

2. Smoothing Analysis. Our smoothing analysis is based on the two-grid vari-
ational multigrid theory from [17], which was developed for general relaxation and
coarsening processes. In this section, we first summarize this theory and then de-
scribe our general approach for applying it to smoother analysis. We represent the
standard Euclidean inner product by 〈·, ·〉 with associated norm, ‖·‖ := 〈·, ·〉1/2.
The A-norm (or energy norm) is defined by ‖·‖A := 〈A ·, ·〉1/2 for vectors, and as the
corresponding induced operator norm for matrices.

Consider solving the linear system of equations

(2.1) Au = f ,

where u, f ∈ Rn and A is a symmetric positive definite (SPD) matrix. Define the
smoother (relaxation) error propagator by

(2.2) I −M−1A,

and assume that the smoother is convergent (in energy norm ‖ · ‖A), i.e. assume that
MT + M − A is SPD. Note that we often refer to the matrix M as the smoother.
Denote the symmetrized smoother by

(2.3) M̃ = MT (MT + M −A)−1M,

so that I−M̃−1A = (I−M−1A)(I−M−T A). Let P : Rnc 7→ Rn be the interpolation
(or prolongation) operator, where Rnc is some lower-dimensional (coarse) vector space
of size nc. The two-grid multigrid error transfer operator with no post-smoothing steps
is then given by

(2.4) ETG = (I − P (PT AP )−1PT A)(I −M−1A),
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where PT is the restriction operator and Ac = PT AP is the Galerkin coarse-grid
operator. Note that coarse-grid correction involves an A-orthogonal projection onto
range(P ).

Let R : Rn 7→ Rnc be any matrix for which RP = Ic, the identity on Rnc , so
that PR is a projection onto range(P ). We can think of R as defining the coarse-grid
variables, i.e., uc = Ru. Also, let S : Rns 7→ Rn be any full-rank matrix for which
RS = 0, where ns = n−nc. Here, the unknowns us = ST u are analogous to the fine-
grid-only variables (i.e., F -points) in AMG. In addition, R and S form an orthogonal
decomposition of Rn: any e can be expressed as e = Ses + RT ec, for some es and ec.
The next theorem summarizes one of the main convergence results in [17].

Theorem 2.1. (see Theorem 2.2 in [17])

(2.5) ‖ETG‖2
A ≤ 1− 1

K
, where K = sup

e

‖(I − PR)e‖2
M̃

‖e‖2
A

≥ 1.

Theorem 2.1 gives conditions that P must satisfy in order to achieve a fast uni-
formly convergent multigrid method. It is clear that to make K small, eigenvectors
of A belonging to small eigenvalues must either be interpolated accurately by P or
else attenuated efficiently by the smoother (since the denominator is small for these
eigenvectors). For brevity, we refer to these as small eigenvectors. The choice of which
small eigenvectors to eliminate by smoothing and which to eliminate by coarse-grid
correction depends on the “localness” of the modes. Essentially, modes that can be
eliminated by a local process (i.e., one that is equivalent to applying an operator with
a comparable sparse nonzero structure to A) should be handled by the smoother.

2.1. Smoothing Analysis with Ideal Interpolation. One approach for using
the above theory to do smoothing analysis is to consider the best K in Theorem 2.1
by substituting the P that minimizes the following for a given R

(2.6) K? = inf
P : RP=Ic

sup
e

‖(I − PR)e‖2
M̃

‖e‖2
A

.

The following theorem evaluates this inf-sup problem.
Theorem 2.2. (see Theorem 3.1 in [17]) Assume that R, S, and P satisfy

RS = 0 and RP = Ic as above. Then K? in (2.6) is given by

(2.7) K? = sup
es

〈ST M̃Ses, es〉
〈ST ASes, es〉

=
1

λmin((ST M̃S)−1(ST AS))
,

and the corresponding minimizer is

(2.8) P? = (I − S(ST AS)−1ST A)RT .

Equation (2.8) defines the so-called ideal interpolation operator. Notice that,
if K? is uniformly bounded with respect to parameters such as the mesh spacing,
then using P? as the interpolation operator results in a uniformly convergent two-grid
method. Since the inverse of ST AS may not be sparse, this is generally not a good
practical choice for interpolation. However, it is reasonable to use P? (and hence K?)
to analyze smoothing.
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We will consider two settings in the analysis that follows, depending on the partic-
ular smoother. The first is the classical AMG setting where the coarse-grid variables
Ru are a subset of the fine-grid variables:

(2.9) RT =
[

0
Ic

]
; S =

[
If

0

]
; P? =

[
−A−1

ff Afc

Ic

]
.

The second setting corresponds more closely to the classical smoothing factor analysis
[12], where the coarse-grid variables span the space of the nc “smallest” (they do not
have to strictly be the smallest as we discuss later) eigenvectors of A:

(2.10) RT = [v1, . . . ,vnc
] ; S = [vnc+1, . . . ,vn] ; P? = RT .

2.2. Comparative Smoothing Analysis. Direct evaluation of K? in (2.6) is
not always straightforward. However, one useful technique that we use below is to
compare the K? for one smoother to that of another with well-known smoothing
properties (e.g., Gauss-Seidel). Writing K = K(M) in (2.5) as a function of the
smoother (similarly for K?), we articulate this approach in the next lemma.

Lemma 2.3. Suppose that M1 and M2 are two convergent smoothers for A that
satisfy

(2.11) 〈M̃1x, x〉 ≤ c〈M̃2x, x〉

for all x, with a fixed constant c. Then, for any choice of the interpolation operator
in the two-grid multigrid method, we have that

K(M1) ≤ cK(M2),

and in particular, K?(M1) ≤ cK?(M2). In other words, multigrid methods using M1

and M2 will have comparable parallel scalability properties, provided c is independent
of the problem size and the number of processors. Therefore, when (2.11) holds, we
say that M1 has multigrid smoothing properties comparable to M2.

Proof. The proof follows immediately from (2.5) and (2.6).
Remark 2.1. Note that the above result can also be analogously stated in terms

of the sharp two-grid theory of [18] since we can write the constant K] in that theory
as

K] = sup
e

∥∥(I − π
M̃

)e
∥∥2

M̃

‖e‖2
A

= sup
v∈range(I−πA)

inf
w :v=(I−πA)w

〈M̃w, w〉
〈Av, v〉

,

where πX = P (PT XP )−1PT X denotes the X-orthogonal projection onto range(P )
for any SPD matrix X.

In some cases, we can directly determine the constant c in Lemma 2.3. However,
we can also bound c in terms of a few general, yet insightful, constants as shown in
the theorem below. First, we state a useful Lemma, which is of general interest.

Lemma 2.4. Suppose that A is SPD and B is arbitrary. Then

〈Ax, x〉 ≤ c〈Bx, x〉 implies 〈B−1x, x〉 ≤ c〈A−1x, x〉.
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Proof. Note that by the given inequality B is invertible, and B−1 + B−T is SPD.
Using Cauchy-Schwarz and the assumption above, we have

〈B−1x, x〉2 = 〈A1/2B−1x, A−1/2x〉2

≤ 〈AB−1x, B−1x〉〈A−1x, x〉
≤ c 〈B−1x, x〉〈A−1x, x〉.

Dividing both sides by 〈B−1x, x〉 gives the desired result.
The above Lemma implies, in particular, that if B is positive definite, i.e. its

symmetric part σ(B) = (BT + B)/2 is SPD, then

〈B−1x, x〉 ≤ 〈σ(B)−1x, x〉.

This inequality has appeared previously and can be found for example in [2], Lemma
3.5.

Theorem 2.5. Suppose that M1 and M2 are two convergent smoothers. Then,

(2.12) K(M1) ≤
2 δ∆2

2− ω
K(M2),

where ∆, ω and δ are given by

(2.13) ∆ = ‖σ(M1)−
1
2 M1σ(M1)−

1
2 ‖, ω = λmax(σ(M1)−1A), δ = sup

v

〈M1v, v〉
〈M2v, v〉

.

This also holds with K replaced by K? and with δ replaced by δs = supv
〈ST M1Sv, v〉
〈ST M2Sv, v〉 .

Proof. From Lemma 2.3 in [17], and since 〈σ(M)x, x〉 = 〈Mx, x〉, we have

K(M1) ≤
∆2

2− ω
Kσ(M1) ≤

δ∆2

2− ω
Kσ(M2) ,

where

Kσ(M) = sup
e

‖(I − PR)e‖2
σ(M)

‖e‖2
A

.

Since A is SPD, from (2.3) we have

〈M̃−1x, x〉 = 〈(M−1 + M−T −M−1AM−T )x, x〉 ≤ 2〈M−1x, x〉.

Hence, Lemma 2.4 implies that

(2.14) 〈Mx, x〉 ≤ 2〈M̃x, x〉 ,

which completes the proof of (2.12). The result for K? follows similarly from (2.7)
and the definition of δs.

The quantity ∆ in (2.13) measures the deviation of M from its symmetric part,
while ω ∈ (0, 2) should be bounded away from two. In particular, ω ≤ 1 is equivalent
to

(2.15) 〈Ax, x〉 ≤ 〈Mx, x〉,
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for all x. When M is symmetric, this is a seemingly natural multigrid smoother
condition, since it implies that I−M−1A will damp the (high-frequency) components
of the error corresponding to the large eigenvalues of M−1A. This is in contrast with
the condition 〈Ax, x〉 ≤ 2〈Mx, x〉 which is equivalent with M being convergent
but allows ω to be close to 2, leading to minimal damping of the corresponding
eigenvector. The difference is clearly illustrated in the case of Richardson’s smoother
M = rI, where r = (λmin +λmax)/2 is optimal in terms of convergence, but r = λmax

has significantly better smoothing properties. An inequality like (2.15) also holds
when M is not symmetric, in the sense that for any symmetrized smoother M̃ we
have

(2.16) 〈Ax, x〉 ≤ 〈M̃x, x〉.

This can be seen in a couple of ways, for example, by introducing the SPD matrix
DM = M + MT −A and noting that

M̃ = MT D−1
M M = (DM + A−M)D−1

M (DM + A−MT )
= A + (A−M)D−1

M (A−MT ).

In particular, (2.15) holds for M defined as two sweeps of any convergent symmetric
smoother, such as Jacobi for diagonally dominant and irreducible A. Since two sweeps
of Jacobi is really no better as a smoother than one sweep, this example also illustrates
the fact that ω alone is not in general a good measure of smoothing properties.

2.3. Historical Notes on Smoothing Analysis. Our approach for analyz-
ing smoothers has many similarities with previous approaches. As mentioned in
Section 2.1, the idea of measuring (or bounding) the two-grid convergence factor
by assuming an ideal interpolation operator is essentially what is done in classical
smoothing factor analysis introduced in [12]. The smoothing factor measures the ef-
fectiveness of relaxation on the oscillatory Fourier modes, which is motivated by the
assumption that interpolation (our ideal interpolation) eliminates the smooth Fourier
modes. An important aspect of this approach is that it is explicitly tied to the (ideal)
coarse-grid correction.

The approach described in Section 2.2 is similar to most other smoother analyses,
where either weighted Richardson or Jacobi relaxation is used for M2 in Lemma 2.3
[19, 8, 9, 26, 27, 25, 28, 10, 11]. A general comparison lemma was stated in [25]. One
limitation of this approach is that coarse-grid correction is not explicitly taken into
account, so in cases such as Maxwell’s equation, care must be taken to compare with
a suitable smoother.

For example, a number of multilevel smoothing conditions for multigrid were con-
sidered in Appendix B of [11]. The first smoothing condition there, (SM.1), combines
(2.16) with a comparative condition of the form (2.11), where M2 is a Richardson
smoother. Since (SM.1) is the only requirement for the smoother (on each level) in
results such as the classical Braess-Hackbusch Theorem 3.1 in [11], it is reasonable to
expect that any analysis based on Lemma 2.3 will be applicable to the full multilevel
multigrid algorithm (even though (2.11) was motivated by a two-grid theory). An-
other condition from [11] is (SM.2), which is a weighted version of (2.15). We note
that (2.15) is not a new condition, and has been imposed on symmetric smoothers in
previously published theories, e.g. [22].

3. The C-F Smoother. In this section, we apply the smoothing analysis theory
from the previous section to the so-called C-F smoother. C-F smoothing corresponds
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to applying an AMG smoother first to the coarse points (C-points) and then to the
fine points (F -points). That C-F smoothers can be effective in practice is evident if
one considers, for example, that C-F smoothing with Gauss-Seidel on a structured
grid is equivalent to red-black Jacobi.

More formally, the C-F smoother is defined by

(3.1) I −M−1
CF A; MCF =

[
Mff Afc

0 Mcc

]
.

This smoother converges if and only if the following are convergent:

If −M−1
ff Aff ; Ic −M−1

cc Acc.

Therefore, one can consider using any of the convergent smoothers discussed in the
following sections as the Mff and Mcc matrices of a C-F smoother. This is typically
advantageous since the principle submatrices Aff and Acc have better properties than
A in terms of conditioning and diagonal dominance. The following theorem shows that
C-F smoothing is good if F -relaxation is fast to converge.

Theorem 3.1. Define S as in (2.9). Then K? in (2.6) for the C-F smoother
satisfies

K? =
1

1− %f
2
; %f = ‖If −M−1

ff Aff‖Aff
.

Proof. Similarly to (2.3), define

(3.2) M̃ff = MT
ff (MT

ff + Mff −Aff )−1Mff .

From (2.3) and the definition of MCF above, we have

M̃ =
[

MT
ff 0

Acf MT
cc

] [
(MT

ff + Mff −Aff )−1 0
0 (MT

cc + Mcc −Acc)−1

] [
Mff Afc

0 Mcc

]
,

and therefore ST M̃S = M̃ff . This implies by Theorem 2.2

K? =
1

λmin(M̃ff

−1
Aff )

=
1

1− λmax[(I −M−1
ff Aff )(I −M−T

ff Aff )]
.

Let Eff = Iff −M−1
ff Aff and let ρ(·) denote the spectral radius of a matrix. Then,

using the definition of %f and the fact that ‖B‖ = ‖BT ‖ for any matrix B, we have

%f
2 = ‖Eff‖2

Aff
= ‖A1/2

ff EffA
−1/2
ff ‖2 = ‖A−1/2

ff ET
ffA

1/2
ff ‖

2

= ρ(A1/2
ff EffA−1

ff ET
ffA

1/2
ff ) = ρ(EffA−1

ff ET
ffAff )

= ρ[(I −M−1
ff Aff )(I −M−T

ff Aff )] ,

which completes the proof.
From the above, we see that C-F smoothing is a natural smoother to use when

coarse grids are selected based on compatible relaxation (CR) [13, 17], because %f is
estimated as part of the CR coarsening algorithm.
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4. Polynomial Smoothers. Polynomial smoothers are of practical interest for
parallel computing for a couple of reasons. First, their application requires only the
matrix-vector multiply routine, which is often highly-optimized on modern parallel
machines. Second, they are unaffected by the parallel partitioning of the matrix,
the number of parallel processes, and the ordering of the unknowns. However, as
mentioned previously, one drawback is the need to calculate eigenvalue estimates.
Unlike the smoothed aggregation variant of AMG, eigenvalue estimates are not needed
by classical AMG, so this computational cost is extra.

We now apply the smoothing analysis from Section 2 to polynomial smoothers.
Let pν(x) be a polynomial of degree ν ≥ 0 such that pν(0) = 1, and consider the
smoother

(4.1) I −M−1A = pν(A).

The following theorem gives conditions for a good polynomial smoother.
Theorem 4.1. Let A = V ΛV T be the eigen-decomposition of A with eigenvectors

vk and associated eigenvalues λk, and define S as in (2.10). Then K? in (2.6) for
the polynomial smoother satisfies

K? =
(

1− max
k>nc

pν(λk)2
)−1

.

Minimizing K? over all pν , we have

min
pν

K? ≤

(
1−

(
min
pν

max
x∈[α,β]

|pν(x)|
)2
)−1

; α ≤ λnc+1 ≤ λn ≤ β.

Proof. Order the eigenvectors in V so that we can write S = V Si, Si = [Is, 0]T .
Then, since I − M̃−1A = (I −M−1A)(I −M−T A), we have

ST M̃S = ST (A−1 − (I −M−1A)A−1(I −M−1A)T )−1S

= ST
i V T (A−1 − pν(A)2A−1)−1V Si

= ST
i (Λ−1 − pν(Λ)2Λ−1)−1Si

= (Λ−1
s − pν(Λs)2Λ−1

s )−1.

Since ST AS = Λs, then

(ST M̃S)−1(ST AS) = Is − pν(Λs)2,

and the first result follows from Theorem 2.2. The second result follows trivially from
the first since we are maximizing over a larger set [α, β] containing λk, k > nc.

In the following two subsections, we first discuss the optimal polynomial smoother
according to Theorem 4.1 and then briefly overview several other choices of polyno-
mials that may also be good smoothers for AMG in practice.

4.1. Chebyshev Smoothers. The min-max problem in Theorem 4.1 has a clas-
sical solution qν(x) in terms of Chebyshev polynomials (see, e.g., [2]). Let Tk(t) be
the Chebyshev polynomial of degree k defined by the recursion

(4.2) T0(t) = 1; T1(t) = t; Tk(t) = 2tTk−1(t)− Tk−2(t), k = 2, 3, . . .
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By letting t = cos(ξ) ∈ [−1, 1], it is easy to show that the explicit form of these
polynomials is Tk(t) = cos(kξ). The polynomial qν(x) is given by

(4.3) qν(x) =
Tν

(
β+α−2x

β−α

)
Tν

(
β+α
β−α

) ,

and has the required property that qν(0) = 1. It also satisfies

−1 < qν(x) < 1 for x ∈ (0, β],

which implies that the smoother (4.1) with pν = qν is convergent as long as the
spectrum of A is contained in the interval (0, β]. To show the above inequality with
α, β > 0 observe that the Chebyshev polynomial Tν(x) equals 1 for x = 1 and is strictly
monotonically increasing for x > 1 (see, e.g., (5.28) in [2]). Therefore, x ∈ [α, β]
implies Tν

(
β+α
β−α

)
> 1 ≥

∣∣∣Tν

(
β+α−2x

β−α

)∣∣∣, while |qν(x)| < 1 due to β+α
β−α > β+α−2x

β−α ≥ 1
for x ∈ (0, α].

Since K? is a measure of the smoothing properties of the smoother (4.1), then
Theorem 4.1 shows that a good choice for polynomial smoothing is qν(x) where the
interval [α, β] contains the “large” eigenvalues of A. The upper bound β can easily be
estimated using a few iterations of conjugate gradient (CG), but choosing a suitable
α is not obvious in general. It is clear that α depends on the coarse-grid size, but
it should also depend on the distribution of eigenvalues for the problem and possibly
even the nature of the associated eigenvectors. To see this, consider a simple Laplace
example on a unit domain discretized by standard finite differences. Assume full
coarsening so that nc/n = 1/2d where d is the dimension. We discuss three possible
choices for α below.

First, note that the analysis above does not require that R be made up of the
strictly smallest eigenvectors of A. Consider instead that R contains the smooth
Fourier modes used in standard local Fourier analysis. In this case, it is easy to see
from standard Fourier diagrams that α should be chosen such that

(4.4) α/β = 1/2 (1D), 1/4 (2D), 1/6 (3D).

The resulting Chebyshev polynomial smoothers were first derived almost 30 years ago
in [29].

Now consider letting R contain the actual nc smallest eigenvectors for the Laplace
equation. Using Matlab, we get the estimates

(4.5) α/β ≈ 0.5 (1D), 0.32 (2D), 0.28 (3D).

Consider again letting R contain the actual nc smallest eigenvectors, but assume
that the eigenvalues are distributed uniformly. Then, we have

(4.6) α/β = 1/2 (1D), 1/4 (2D), 1/8 (3D).

In practice, we set β by estimating λmax with several iterations of CG and set
α = aβ for some fraction 0 ≤ a ≤ 1. We use a = 0.3 in the numerical experiments
in [4]. A similar approach is used in [1], but with a small a = 1/30. It is not vital
to estimate λmin unless it is large. In that case, no coarse grid is needed, and the
smoother should damp all eigenvectors equally well, i.e., α should approximate λmin.
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4.2. Other Polynomial Smoothers. Although the above theory leads natu-
rally to the Chebyshev polynomial in (4.3), there are several other polynomials in
the literature that are also good smoothers. We briefly summarize some of the most
notable here.

A related smoother to the Chebyshev polynomial in (4.3) is the following shifted
and scaled Chebyshev polynomial used in the AMLI method [3]

(4.7) q+
ν (x) =

1 + Tν

(
β+α−2x

β−α

)
1 + Tν

(
β+α
β−α

) .

This has the required property that q+
ν (0) = 1, but satisfies

0 < q+
ν (x) < 1 for x ∈ (0, β].

This implies that (2.15) holds, a sometimes desirable property for smoothers.
Another polynomial smoother of interest is used in both the smoothed aggregation

(SA) and cascadic multigrid methods [7, 14, 30], and is given by

(4.8) φν(x) = (−1)ν

(
1

2ν + 1

)(√
β√
x

)
T2ν+1

(√
x√
β

)
.

Note that (4.8) does not require the estimation of α. It can be shown that φν is the
minimizer of

(4.9) min
pν

max
x∈[0,β]

|
√

x pν(x)|.

The weak approximation property in (2.5) shows that coarse-grid correction must
eliminate eigenvectors with accuracy proportional to the square root of their associ-
ated eigenvalue. The

√
x term in (4.9) serves the role of coarse-grid correction, so

the polynomial φν has a certain optimality with respect to the weak approximation
property. However, (4.9) does not account for the fact that coarse-grid correction only
operates on a subspace of size nc, so the resulting smoother φν does not damp the
largest eigenvectors (i.e., those not damped at all by coarse-grid correction) as much
as it otherwise would. It could be modified to satisfy (4.9) over the interval [α, β] to
improve its properties as a smoother, but it is not clear that this is better than using
the Chebyshev polynomial in (4.3). Note that the polynomial φν makes perfect sense
for smoothing a tentative interpolation operator, which is its primary purpose.

The MLS smoother in [1] is the product of φν and a complementary (post)
smoother of the form

I − ω

λmax(φ2
νA)

φ2
νA.

It has better overall smoothing properties than φν alone, and it is particularly advan-
tageous when using aggressive coarsening.

The polynomial smoother in [24] minimizes an equation like (4.9) over the interval
[α, β], but with

√
x in the equation replaced by 1/x. This means that the amplitude of

the polynomial increases over the interval [α, β]. The polynomial is computed through
a three-term recurrence.

The conjugate gradient method is also a good smoother [6]. Note that it con-
verges to the Chebyshev polynomial in (4.3), but over the entire eigenvalue interval
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Fig. 4.1. Various polynomials of order two (left) and four (right). The CG polynomial was
generated by solving a 2D Laplace problem on a 25 × 25 grid with a random initial error. The
Chebyshev polynomial (4.3) uses a = 0.3. The SA polynomial is given by (4.8).

[α, β] = [λmin, λmax]. Even though this is not a good value for α, it is only relevant
asymptotically; for small ν, CG has good smoothing properties. Other Krylov meth-
ods such as conjugate residual (also called minimum residual or MINRES) typically
have good smoothing properties as well [6].

In Figure 4.1 we plot several polynomials over the eigenvalue interval. Focusing on
the fourth-order figure, note that the polynomial tails for x > β = 8 turn up steeply.
For this reason, it is important not to underestimate λmax in practice. Note also that
the CG polynomial closely approximates Chebyshev. As previously mentioned, the SA
polynomial does not damp the large eigenvectors as well as the others. The Richardson
polynomial is given by (I−λ−1

max)
ν . We include it in the figure because it is the simplest

smoother to understand and it is used in most classical smoothing analysis. In the
interest of keeping the figure readable, we do not plot all of the polynomials in this
section. Note, however, that they all have good smoothing properties, with mostly
minor differences between them as noted in the text.

5. The Hybrid Smoother. The class of so-called hybrid smoothers can be
viewed as the result of the straightforward parallelization of a smoother. For example,
the easiest parallelization of GS is to have each process independently use GS on its
domain and then exchange information from neighbor processors after each iteration,
resulting in a Jacobi-like update at the processor boundaries. As noted in Section 1,
hybrid smoothers, like hybrid GS in particular, are of interest because they are easy
to implement and often quite effective in practice, even though convergence may not
be guaranteed. In this section, we first formally define hybrid smoothers and apply
the smoothing analysis theory from Section 2. We then discuss two particular hybrid
smoothers, hybrid GS and Block Jacobi, in more detail, and, finally, we discuss the
use of weights with hybrid smoothers.

We define the hybrid smoother to be essentially an inexact block Jacobi method.
Specifically, let Ω = {1, . . . , n} and consider the non-overlapping partition of Ω,

Ω =
p⋃

k=1

Ωk.

Of particular practical interest in this paper is the case where Ωk represents the
unknowns on processor k so that p is the total number of processors, but the analysis
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below is for the general setting. Let A be partitioned into blocks Akl of size nk × nl

where the rows of Akl are in Ωk and the columns are in Ωl. Let I − B−1
k Akk be a

smoother for Akk. Then, the hybrid smoother is defined by

(5.1) I −M−1
H A; MH = diag{Bk},

where diag{Bk} denotes the block-diagonal matrix with blocks Bk.
If Bk = Akk, then (5.1) is block Jacobi. As p increases, the convergence of

block Jacobi approaches that of pointwise Jacobi. However, although (unweighted)
pointwise Jacobi is often not a good smoother, we show below that block Jacobi and
other hybrid smoothers can have good smoothing properties independent of p, as long
as the blocks are sufficiently large. We also show that this threshold block size can
be quite small. We first discuss the convergence properties of the hybrid smoother.

Assume that the block smoothers are convergent in the sense of (2.15), that is

〈Bkvk, vk〉 ≥ 〈Akkvk, vk〉 .

Then, 〈(BT
k +Bk−Akk)vk, vk〉 ≥ 〈Akkvk, vk〉. To show that the hybrid smoother is

convergent, we need to show that MT
H + MH −A is SPD. With v composed of blocks

vk ∈ Rnk , we have that

〈(MT
H + MH −A)v, v〉 =

∑
k

〈(BT
k + Bk −Akk)vk, vk〉 −

∑
k

∑
l 6=k

〈Aklvl, vk〉

≥
∑

k

〈Akkvk, vk〉 −
∑

k

∑
l 6=k

〈Aklvl, vk〉.

One class of matrices for which the latter is positive is the class of block red-black
matrices, i.e., when A admits the following two-by-two form

A =
[

Arr Arb

Abr Abb

]
,

with block-diagonal matrices Arr and Abb. To see this, note that SPD A implies∑
k

∑
l

〈Aklvl, vk〉 > 0.

Replacing vk with εkvk for εk = 1 or εk = −1, we obtain∑
k

〈Akkvk, vk〉 > −
∑

k

∑
l 6=k

εkεl 〈Aklvl, vk〉

=
∑

k

∑
l 6=k

〈Aklvl, vk〉,

where the last equality holds by choosing εk = 1 for the “red” blocks and εk = −1
for the “black” blocks. In that case, εkεl = −1 for any k 6= l where Akl 6= 0. As a
practical example of a block red-black matrix, consider a structured (i.e. topologically
Cartesian) partitioning of a 5-point discretization in 2D.

To analyze the smoothing properties of the hybrid smoother, we introduce a
constant, θ ≥ 0, which is a measure of the relative size of the block off-diagonal
portion of A. First, define the sets

(5.2) Ω(i) = {j ∈ Ωk : i ∈ Ωk}; Ω(i)
o = {j /∈ Ωk : i ∈ Ωk}.

12



Hence, Ω(i) is the set of columns in the diagonal block for row i while Ω(i)
o contains the

remaining “off-diagonal” columns in row i. Now, with aij denoting the coefficients of
A, define θ such that

(5.3) aii ≥ θ
∑

j∈Ω
(i)
o

|aij | for all rows i.

Under weak scaling, θ will quickly stabilize to a value independent of the number of
processors. In many applications this value will satisfy θ > 1. This, for example,
is the case when A is diagonally dominant and each Akk has at least two non-zero
entries per row (in particular the block sizes are large enough). Another example
is the 5-point discretization of the Laplacian in 2D, where θ = 2. In general θ is
large whenever most of the strong connections for each i (relatively large |aij |) are
contained inside its block. For finite element discretizations, better values for θ are
obtained when the blocks correspond to element partitioning (as opposed to random
partitioning of the degrees of freedom, see Section 7.3 in [4].

5.1. Hybrid Gauss-Seidel. In this section we consider the hybrid Gauss-Seidel
smoother MHGS , which is obtained when the blocks Bk in (5.1) are chosen to be
Gauss-Seidel sweeps for Akk. This smoother is of practical importance, for example,
because it is the default option in the BoomerAMG code.

Let A = D + L + LT , where D is the diagonal of A and L and LT are its strictly
lower and upper triangular parts. We first remark that MHGS is convergent if θ > 1
or if A is red-black both with and without the block partitioning. Indeed, the θ
condition implies

(5.4) 〈Dv, v〉 ≤ θ

θ − 1
〈(MT

HGS + MHGS −A)v, v〉 ,

while in the red-black case we have that both regular and block Jacobi are convergent,
and therefore

2〈MHGSv, v〉 =
∑

k

〈Akkvi, vk〉+ 〈Dv, v〉 > 〈Av, v〉 .

Note that if A has large positive off-diagonal entries, such as in discretizations of
definite Maxwell problems, MHGS may be divergent, even for large block sizes. This
was the motivation in [23] to develop the `1 smoothers considered in the next section.

In the next two theorems, we compare the smoothing properties of MHGS to that
of the standard Gauss-Seidel smoother MGS = D+L. We first estimate the constants
in Theorem 2.5 to do the comparison.

Theorem 5.1. Assume that A is diagonally dominant and MHGS corresponds
to hybrid red-black Gauss-Seidel. Then,

K(MHGS) ≤ 4(3θ − 1)
3(θ − 1)

K(MGS).

Proof. We use Theorem 2.5. First, note that if γ satisfies 〈Av, v〉 ≤ γ〈Dv, v〉
for all v, then

ω ≤ 2
1 + θ−1

γθ

.
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‖ETG‖2
A K?

m p BJac HGS BJac HGS
512 1 0.00 0.20 1.00 1.25
256 2 0.50 0.32 65.12 1.81
128 4 0.50 0.32 110.62 1.81
32 16 0.51 0.32 418.96 1.81
16 32 0.53 0.32 834.93 1.81
4 128 0.56 0.41 3334.24 1.81
2 256 0.56 0.39 6667.23 2.33
1 512 1.00 1.00 26664.93 26664.93

Table 5.1
Convergence factors and constants from Theorem 2.1 for (unweighted) block Jacobi (BJac) and

hybrid GS (HGS) for a 1D Laplace problem with m unknowns per block and p blocks.

This follows from the definition of ω in (2.13), the fact that 2σ(MHGS) = A+(MT
HGS+

MHGS −A), and (5.4). From the assumptions, δ ≤ 2 and γ ≤ 2, so ω ≤ (4θ)/(3θ−1).
It is not difficult to show that ∆2 ≤ 4/3 for hybrid red-black GS.

Next, we compute the constant in Lemma 2.3 directly. Note that this approach
requires less assumptions, but also gives a worse estimate when θ is close to one.

Theorem 5.2. Assume that θ > 1. Then

K(MHGS) ≤ θ

θ − 1

(
1 +

2
θ

)2

K(MGS).

Proof. Analogous to Theorem 6.2 from the next section, using (5.4) and the fact
that

‖(MHGS −MGS)x‖2
D−1 ≤

1
θ2
〈Dx, x〉 ≤ 4

θ2
〈M̃GSx, x〉.

By Theorem 5.1 and Theorem 5.2 we can conclude that hybrid Gauss-Seidel will
be a convergent smoother with smoothing properties comparable to full Gauss-Seidel
provided that θ > 1, e.g. if A is diagonally dominant and each block is large enough
to have at least two non-zero entries per row.

5.2. Block Jacobi. As mentioned in the beginning of Section 5, the hybrid
smoother can be thought of as an inexact block Jacobi method. Since hybrid GS can
be shown to have smoothing properties comparable to GS under certain conditions,
it seems plausible that (unweighted) block Jacobi might have even better smoothing
properties. In fact, block Jacobi is not a particularly good smoother, though it can
exhibit smoothing properties independent of the number of blocks (processors).

As an example, consider again a standard Laplace problem on a unit domain
with homogeneous Dirichlet boundary conditions . In Table 5.1, we report ‖ETG‖2

A

from Theorem 2.1 for the ideal interpolation operator P? in (2.9) for a coarsening
factor of two in 1D. We also report the corresponding K?. From the table, we see
that hybrid GS is a better smoother than block Jacobi, while both methods appear to
have p-independent convergence factors for m > 1 (this is easily confirmed by fixing
m and increasing p; not shown). At m = 1, both methods degenerate into unweighted
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pointwise Jacobi, which is known to have poor smoothing properties. We also see from
the table that K? is stable for hybrid GS but unbounded for block Jacobi (additional
numerics shows that K? depends on both m and p). This implies that the theoretical
tools in Section 2 are not adequate for analyzing block Jacobi. Although not the best
smoother choice in practice, we would like to get a deeper understanding of block
Jacobi’s smoothing properties. One approach might be to base the analysis on the
sharp theory in [18], but we have not yet pursued this.

The observations from Table 5.1 also carry over to 2D (we have not done 3D
experiments), but they are more pronounced. In particular, the convergence factor
for m ≥ (2×2) approaches 0.76 for block Jacobi instead of 0.56 as in 1D, while hybrid
GS stays at 0.39. Another item worth noting is that the convergence of both methods
degrades for larger coarsening factors, as one would expect. In addition, for block
Jacobi, the minimum block size needed to yield good smoothing properties increases
with increasing coarsening factor. It remains the same for hybrid GS as indicated by
the theory.

5.3. Using Weights in Hybrid Smoothers. While we have shown that for
many problems hybrid smoothers converge well, there are various situations where
this is not the case, see e.g. Section 7.3 in [4]. Convergence can be achieved by
multiplying MH with a weight ω as follows:

Mω = ωMH .

If MH is SPD and ω = λmax(M−1/2
H AM

−1/2
H ), we immediately get (2.15). In practice,

ω can be obtained by the use of Lanczos or CG iterations. For further details on the
use of relaxation weights in hybrid smoothers, see [32].

6. The `1 Smoother. While weighted hybrid smoothers are an attempt to fix
hybrid smoothers by multiplying them with a suitable parameter, `1 smoothers do
so by adding an appropriate diagonal matrix, which also leads to guaranteed conver-
gence. They have the additional benefit of not requiring eigenvalue estimates. The `1
smoother is defined by

(6.1) I −M−1
`1

A; M`1 = MH + D`1 = diag{Bk + D`1
k },

where D`1 is a diagonal matrix with entries

d`1
ii =

∑
j∈Ω

(i)
o

|aij | .

Note that with this notation (5.3) is simply D ≥ θD`1 . Furthermore, D`1 has the
important property that

(6.2) 〈Av, v〉 ≤
∑

k

〈Akkvk, vk〉+ 〈D`1v, v〉 ,

which follows from the Schwarz inequality 2|aijvivj | ≤ |aij |v2
i + |aij |v2

j .
We first show that M`1 is A-convergent, i.e., that MT

`1
+ M`1 − A is SPD. In

the case where Bk = Akk, we can actually show more, since (6.2) implies (2.15). In
general, if the block smoothers Bk are non-divergent in the Akk-norm with at least
one of them being convergent, then

〈Akkvk, vk〉 ≤ 〈(BT
k + Bk)vk, vk〉
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with strict inequality holding for at least one k. Hence, from (6.2),

〈Av, v〉 <
∑

k

〈(BT
k + Bk + D`1

k )vk, vk〉 ≤ 〈(MT
`1 + M`1)v, v〉.

Remark 6.1. The following scaled `1 smoother is also A-convergent:

M`1 = diag{Bk +
1
2
D`1

k }.

6.1. `1 Jacobi. We first consider the `1 point Jacobi smoother M`1J = D +D`1

with blocks of size one. From above, this smoother is always convergent and satisfies
(2.15). In the next theorem we compare M`1J to standard GS using Theorem 2.5.
Note that since the blocks are of size one, θ satisfies aii ≥ θ

∑
j 6=i |aij |.

Theorem 6.1. Without any restrictions, we have

K(M`1J) ≤ 4
(

1 +
1
θ

)
K(MGS).

In particular, `1 Jacobi has multigrid smoothing properties comparable to full Gauss-
Seidel for any A, for which θ is bounded away from zero.

Proof. Since M`1J is symmetric and satisfies (2.15) we can take ∆ = 1 and ω = 1.
To estimate δ we observe that

〈M`1Jx, x〉 ≤
(

1 +
1
θ

)
〈Dx, x〉 ≤

(
1 +

1
θ

)
2〈MGSx, x〉 .

6.2. `1 Gauss-Seidel. Finally, let M`1GS = MHGS +D`1 be the `1 Gauss-Seidel
smoother. This is the default smoother used in the AMS code [23]. As shown earlier
in this section, this smoother is always convergent, and we analyze it by directly
computing the constant in Lemma 2.3.

Theorem 6.2. Without any restrictions, we have

K(M`1GS) ≤
(

1 +
4
θ

)2

K(MGS).

In particular, `1 Gauss-Seidel has multigrid smoothing properties comparable to full
Gauss-Seidel for any A, for which θ is bounded away from zero, independently of the
number of blocks (processors) or the block sizes.

Proof. First, observe that 〈M`1GSx, x〉 ≥ 〈MGSx, x〉 implies

〈Dx, x〉 ≤ 〈(MT
`1GS + M`1GS −A)x, x〉.

Therefore,

〈M̃`1GSx, x〉 = 〈(MT
`1GS + M`1GS −A)−1M`1GSx, M`1GSx〉 ≤ ‖M`1GSx‖2

D−1 .

By the triangle inequality in the D−1-inner product,

‖M`1GSx‖D−1 ≤ ‖MGSx‖D−1 + ‖(M`1GS −MGS)x‖D−1 .
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The first term above is simply 〈M̃GSx, x〉1/2, while the second can be estimated as
follows using the Schwarz inequality (in lines 2 and 4), the symmetry of A (in line 5),
and the fact that A is SPD together with (2.14) (in line 6):

‖(M`1GS −MGS)x‖2
D−1 =

∑
i

1
aii

( ∑
j∈Ω

(i)
o

|aij |xi −
∑

j∈Ω(i)
o

j<i

aijxj

)2

≤
∑

i

1
aii

[( ∑
j∈Ω

(i)
o

|aij |
)1/2( ∑

j∈Ω
(i)
o

|aij |x2
i

)1/2

+
( ∑

j∈Ω(i)
o

j<i

|aij |
)1/2( ∑

j∈Ω(i)
o

j<i

|aij |x2
j

)1/2
]2

≤
∑

i

1
aii

( ∑
j∈Ω

(i)
o

|aij |
)[( ∑

j∈Ω
(i)
o

|aij |x2
i

)1/2

+
( ∑

j∈Ω(i)
o

j<i

|aij |x2
j

)1/2
]2

≤ 2
∑

i

1
aii

( ∑
j∈Ω

(i)
o

|aij |
)( ∑

j∈Ω
(i)
o

|aij |x2
i +

∑
j∈Ω(i)

o
j<i

|aij |x2
j

)

≤ 2
θ

∑
i

( ∑
j∈Ω

(i)
o

|aij |+
∑

j∈Ω(i)
o

j>i

|aij |
)

x2
i

≤ 4
θ2
〈Dx, x〉 ≤ 8

θ2
〈MGSx, x〉 ≤ 16

θ2
〈M̃GSx, x〉.

The desired bound now follows by assembling the above estimates together. Note that
in the last line we derived the inequality 〈Dx, x〉 ≤ 4〈M̃GSx, x〉, which has appeared
previously in [33], Lemma 3.3 and in [30], Proposition 6.12.

The scaled variant of `1 GS based on Remark 6.1 is given by M`1GS = MHGS +
1
2D`1 . A result similar to Theorem 6.2 also holds for this smoother, as shown below.

Theorem 6.3. Without any restrictions, we have for the scaled `1GS smoother

K(M`1GS) ≤

(
1 +

√
10
θ

)2

K(MGS).

Proof. The proof follows as above, except that we have that

‖(M`1GS −MGS)x‖2
D−1 =

∑
i

1
aii

(
1
2

∑
j∈Ω

(i)
o

|aij |xi −
∑

j∈Ω(i)
o

j<i

aijxj

)2

.

Another convergent option, which also takes advantage of the local estimation of
θ in (5.3) is

(6.3) M`1GS∗ = MHGS + D`1∗, where d`1∗
ii =

{
0, if aii ≥ ηd`1

ii ;
d`1

ii /2, otherwise.

and η is a fixed parameter satisfying η > 1. This smoother locally switches to `1
GS if hybrid GS is not appropriate, and we have found that the value η = 1.5 works
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well in practice. Some results with this smoother are shown in Section 7 of [4]. Note
that the smoother M`1GS∗ is identical to MHGS when θ ≥ η, and reduces to the
scaled version of M`1GS based on Remark 6.1 when θ is uniformly small relative to
η. Furthermore, the general conclusion of Theorem 6.2 still holds for M`1GS∗, since
η = 1.5, for example, implies

〈Dx, x〉 ≤ 3〈(MT
`1GS∗ + M`1GS∗ −A)x, x〉.

7. Concluding Remarks. In this paper we reviewed and analyzed a number of
practical parallel multigrid smoothers, and evaluated their potential for scalability on
ultra-parallel computers with millions of processors. Based on the framework from [17,
18] we proposed both a direct (Theorem 2.2) and a comparative (Lemma 2.3) approach
for smoother analysis. Using these approaches, we showed that C-F smoothing is
good if F-relaxation is fast to converge (Theorem 3.1), that Chebyshev is the optimal
polynomial smoother (Theorem 4.1), and that hybrid Gauss-Seidel exhibits multigrid
smoothing properties which are independent of the number of processors in many
practical applications, e.g. if the matrix is diagonally dominant and the problem
size per processor is large enough (Theorem 5.2). For the more robust `1 smoothers
described in Section 6, we were able to prove processor-independent equivalence with
full Gauss-Seidel with minimal restrictions on the matrix (Theorem 6.2).

Numerical experiments for the most promising of the above parallel smoothers
using both message-passing (with MPI) and threading (with OpenMP) can be found
in [4].
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